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Quantifying hormones in exhaled 
breath for physiological assessment 
of large whales at sea
Elizabeth A. Burgess1, Kathleen E. Hunt2, Scott D. Kraus1 & Rosalind M. Rolland1

Exhaled breath analysis is a non-invasive assessment tool that has shown promise in human 
diagnostics, and could greatly benefit research, management, and conservation of large whales. 
However, hormone assessment of whale respiratory vapor (blow) has been challenged by variable 
water content and unknown total volume of collected samples. To advance this technique, we 
investigated urea (a compound present in narrow range in circulation) as a normalizing factor 
to correct for blow sample concentration. Normalized progesterone, testosterone, and cortisol 
concentrations of 100 blow samples from 46 photo-identified North Atlantic right whales (Eubalaena 
glacialis) were more biologically relevant compared to absolute estimates, varying by sex, age class, 
or individual. Progesterone was elevated in adult females compared with other cohorts and highest 
in one independently confirmed pregnant female. For both sexes, testosterone was two-fold higher 
in reproductively mature whales but studied adult females showed the widest variation. Cortisol 
was present in relatively low concentrations in blow and demonstrated variation between individual 
whales, suggesting potential for studies of individual differences in adrenal activity. Incorporation of 
methodologies that normalize sample concentration are essential for blow hormone analysis of free-
swimming whales, and measurement of urea could be used to optimize non-invasive physiological 
assessment of whales.

Exhaled breath analysis is an emerging technology used for diagnostic testing in human health1–3, and also holds 
promise in advancing physiological research of large whales4. Studies in humans have shown that the breath 
matrix contains valuable biomarkers, including proteins, steroids, lipids, cytokines, electrolytes, nucleotides, and 
urea5–8, due to a diffuse exchange with blood at the pulmonary alveolar membrane interface and the expulsion of 
airway lining fluid3,6. Analyzing biomarkers in breath has been explored for humans as a convenient and repeat-
able clinical procedure without harm or discomfort to patients1. Similarly, the appeal of investigating respiratory 
vapor of whales (blow)4,9,10 is based on its non-invasive approach and potential frequency of sample collection 
in a highly mobile species, since whales come to the surface of the water to forcefully exhale and take in oxygen. 
Whales breathe in large tidal volumes with extreme efficiency due to two layers of pulmonary capillaries for max-
imal exposure of lung air to blood circulation11,12. Moreover, the respiratory and digestive tracts of cetaceans are 
separated to a greater extent than other mammals, such that the larynx extends up to the nasal cavity rather than 
opening into the throat (cf. human breath analysis, where salivary contamination of the sample is a concern6). 
Due to the unique respiratory anatomy of cetaceans, there is potential that important physiological insights could 
be derived from whale respiratory vapor measurements.

The need to develop technologies for physiological assessment of free-swimming whales is driven by increas-
ing anthropogenic pressures and ocean industrialization13. Measurable physiological biomarkers could afford 
managers insights into sub-lethal effects on health and reproduction14, potentially before deleterious popula-
tion consequences occur15. To date, hormone analyses have provided valuable information on many aspects 
of cetacean physiology in the wild, including reproductive maturity, pregnancy status, metabolism and stress 
responses16–24, as well as possible cause-and-effect relationships18,25–28. These previous hormone studies have 
either relied on fecal samples collected opportunistically after defecation or blubber samples collected using 
biopsy darting. Despite the significant contribution of these sampling methodologies, there remains a need for 
a technique that permits repeated sampling of a targeted individual whale, throughout seasonal movements, life 
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history changes, and fasting periods. Furthermore, unlike feces and blubber that accumulate hormones over 
hours or days29, the hormone content in blow may reflect more rapid and short-term acute responses30 asso-
ciated with a particular event or stressor. As a more nascent sample type for hormone analysis, cetacean res-
piratory vapor has been shown to contain detectable levels of steroid (e.g., testosterone, progesterone, estradiol, 
estrone, cortisol) and thyroid hormones (e.g., thyroxine and triiodothyronine)4,9,31–34, and a vast number of vol-
atile and nonvolatile compounds34–36, in addition to DNA from both the individual whale37–39 and respiratory 
microorganisms10,40.

For blow hormone analysis to become a useable diagnostic tool for large whales, hormone measures in the 
blow matrix must be quantifiable and resulting data must be shown to be physiologically valid. A recent study 
using samples collected from aquarium beluga (Delphinapterus leucas) demonstrated that testosterone and pro-
gesterone concentrations in respiratory droplets were correlated with blood concentrations33, showing physio-
logical concordance between blow and the biological matrix most traditionally used in diagnostics. Researchers 
used volumetric measures to quantify blow hormone concentrations of belugas under controlled conditions that 
enabled sample collection of relatively undiluted respiratory droplets from multiple exhalations. Although this 
study achieved critical steps in the development of blow hormone analysis, the analytical techniques developed 
for small cetacean species in captivity (e.g., beluga32,33, bottlenose dolphin Tursiops truncatus41) or under restraint 
in the wild32,33 are not transferrable to free-swimming cetaceans, especially large whales. No studies to date have 
been able to determine an accurate and reliable volumetric measure of a blow sample collected from a whale at 
sea4,9,36. Quantifying hormones in large whale blow is challenging because respiratory droplets are markedly 
diluted by high and variable amounts of water vapor [determined by a whale’s ventilatory rate, the saturation of 
the exhaled air, the rate of condensation in the environment, and/or rapid evaporation of diffuse tiny droplets on 
the sampling surface] and a high potential for seawater contamination of a sample, when the whale breaks the 
surface of the water for exhalation. As a result, the total amount of respiratory fluid is highly variable and difficult 
to quantify in field-collected samples; and thus, concentrations of hormone in whale blow samples cannot reliably 
be standardized per unit volume (or mass).

There is a need to investigate a suitable independent biomarker present in exhaled whale blow that could 
be used as a reliable dilution indicator to correct for the amount of respiratory fluid collected, and standardize 
measurements (sample normalization). The most commonly measured biological fluid requiring normalization 
methods is urine because urinary solute concentrations vary greatly depending on various physiological factors 
such as water intake42,43. A widely accepted approach for urine volume correction is to express hormone metab-
olite levels relative to a reference analyte (e.g., creatinine) that is inherently present in all samples and reflects 
sample concentration42,43. In human exhaled breath studies, urea has been the most widely utilized indicator of 
specimen dilution3,6,44–46 because it has relatively low variation in circulation, it is a small molecule that readily 
diffuses between the plasma and airway fluid, and has a low volatility30,47–49. Given these properties, it should be 
possible to estimate the dilution of collected respiratory fluid by measuring the absolute quantity of urea in the 
sample49,50 (a diluted respiratory sample would have a lower urea concentration and vice versa), and then normal-
ize hormone content by calculating the ratio of hormone to urea; reporting results as ng/mg urea. This approach 
could correct for seawater contamination, the amount of respiratory fluid collected, and/or individual variation 
in a whale’s exhalation volume; and ultimately, would permit comparisons of relative concentrations of hormones 
in whale blow samples.

Since blood sampling and standard endocrine validations (e.g., pituitary hormone challenges, radiolabe-
led hormone infusions) are not feasible for free-swimming whales14, testing the validity of this approach will 
depend upon verifying that normalized hormone concentrations in whale blow vary as expected with differing 
known physiological states16,17. The North Atlantic right whale (Eubalaena glacialis) is an ideal study population 
to develop and physiologically validate this method. North Atlantic right whales (hereafter, right whales) remain 
one of the most endangered large whales51 with the current population estimated at less than 500 individuals52. 
This population has been consistently monitored since 198053, and the long-term North Atlantic Right Whale 
Identification and Sightings Database – grounded on the ability to identify most whales in the population – 
holds immense amounts of data on individual whales including the birth year (for whales sighted as calves), sex, 
calving history, habitat-use patterns, and the impact of human activities54. Moreover, long-term studies on fecal 
hormones in right whales have yielded extensive information on the endocrine patterns expected for various 
reproductive states in this species16,17,24–26. Having independent knowledge of the physiological status of individ-
ual whales (particularly, sex, age class [juvenile/adult], and reproductive status) allows biologically meaningful 
patterns in whale blow hormone results to be confirmed with a priori predictions.

Here, we leveraged four decades of dedicated right whale research to advance the quantitative analysis of 
hormones in whale blow. Our objectives were to: i) determine the presence of urea in whale blow and validate an 
assay protocol for reliable urea measurement in whale blow samples; ii) examine the variation of urea in whale 
blow samples to assess its potential as an informative dilution indicator for normalizing hormone concentrations 
in field-collected samples; iii) determine whether normalized progesterone, testosterone and cortisol concen-
trations in blow samples reflect endocrine profiles expected for whales of different known life history states; and 
iv) evaluate whether sample normalization methods compared to absolute (non-normalized) estimates better 
distinguished biologically relevant patterns for blow hormone analysis of large whales.

Results
A total of 100 blow samples were collected from 46 individual North Atlantic right whales over eight days (Fig. 1). 
Whales were all identified individuals of known sex and reproductive state (ages ranged from one to over 37 y.o.), 
except for one identified juvenile of unconfirmed sex (5 y.o.). Of the males sampled (n = 30 individuals), 13 were 
juveniles and 17 were adults (although a single sample from one adult male had zero detectable analytes). Of the 
females sampled (n = 15 individuals), eight were juveniles and seven were adults, comprising five resting females 
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(i.e., non-lactating and not re-sighted with a calf), one lactating cow with an attendant calf, and one confirmed 
pregnant female (sighted the following year with a neonate calf). During each sampling encounter, a single sam-
ple was collected from an individual right whale. However, after photo-identification, we determined that repeat 
samples were collected from 24 whales. We also opportunistically collected a fecal sample from the pregnant 
female, and subsequently performed fecal progesterone analyses16 for a matched comparison with two blow sam-
ples collected from this female.

We successfully collected a blow sample from 74% of approached whales, with an average of 13 ± 10 samples 
collected per day at sea. Our sampling success rate significantly improved with experience (χ2 = 27.53, df = 7, 
P < 0.001), such that in our last two days of blow sampling, we sampled 94% and 100% of whales approached 
(n = 32 and 11 whales, respectively). There was no bias towards achieving better quality samples in the later days 
of collection (rs = −0.43, P = 0.67). The collection of a blow sample from an individual right whale was achieved 
on average within 5 ± 4 min (range <1 min and up to 23 min; 87% of samples were collected in <10 min). An 
excellent quality sample was typically collected within 4 ± 0.5 min, good samples within 7 ± 1 min, and fair sam-
ples within 10 ± 1 min. The number of exhalations collected per sampling event was mostly one (n = 75) or two 
exhalations (n = 16), but up to three (n = 7) and four exhalations (n = 2) could be collected from a targeted whale. 
Most samples were collected using a dish sampler (n = 74), with some samples collected using a nitex mesh sam-
pler for comparison (n = 26).

Variation in blow urea.  The urea assay reported a small level of exogenous background noise from neg-
ative controls (i.e., non-zero results for blank samples) of nitex mesh samplers (0.13 ± 0.05 mg/dL), whereas 
negative controls of dish materials produced no assay interference (see Supplementary Table 1). Urea in whale 
blow was measureable in 95% of sample extracts, with five samples excluded from analyses due to potentially 
no biological matrix collected on the sampling device; these included 4% of samples collected on dish sam-
plers that had zero detectable urea (n = 3) and 8% samples collected on nitex mesh (n = 2) that had urea levels 
(0.11 and 0.09 mg/dL) lower than the known assay interference for that sampling device. Absolute quantities 
of urea in whale blow extracts, corrected for assay interference, were on average 0.109 ± 0.016 mg/dL, ranging 
from 0.002 up to 1.041 mg/dL. Absolute urea quantities were not influenced by the different materials used in 
sample collection (Wald statistic = 2.10, df = 1, P = 0.15; dish: 0.06 ± 0.01 mg/dL, nitex mesh: 0.10 ± 0.04 mg/dL) 
but were associated with the quality score assigned to samples (Wald statistic = 9.45, df = 2, P = 0.01). The bet-
ter quality samples had higher quantities of urea at 0.14 ± 0.02 mg/dL (n = 61 excellent samples, 0.11−0.18 mg/
dL) and 0.12 ± 0.03 mg/dL (n = 18 good, 0.07−0.19 mg/dL), and inferior samples had the lowest urea levels at 
0.03 ± 0.01 mg/dL (n = 16 fair, 0.01−0.08 mg/dL; P = 0.04) (Fig. 2). Higher sample quality scores consistently 
predicted increased urea concentration in both sampler types (model interaction term: Wald statistic = 3.98; 
df = 2, P = 0.14).

Variation in blow hormones.  Progesterone in right whale blow was measurable in 78% of sample extracts, 
excluding 23% of dish (n = 17) and 19% of nitex mesh collected samples (n = 5) below the limit of detection. 
Normalized progesterone concentrations ranged between 13.9−1486.9 ng/mg urea. The best model evaluating 
normalized blow progesterone data had a high relative model weight (ωi = 0.75) and included the effect of whale 
sex (LR χ2 = 12.88, df = 1, P < 0.001; Table 1). Individual whale identity was retained in the model but was not 
statistically significant (LR χ2 = 2.42, df = 1, P = 0.12). Sex-related differences in normalized concentrations 
of progesterone indicated that female right whales had on average higher blow progesterone (365.1 ± 63.6 ng/
mg urea, 259.5–513.7 ng/mg urea) than males (173.8 ± 19.5 ng/mg urea, 139.6–216.5 ng/mg urea; P < 0.001) 
(Fig. 3). Adult females (488.7 ± 123.1 ng/mg urea, 298.3–800.8 ng/mg urea) had nearly twice the progesterone 
concentration of juvenile females (260.3 ± 59.9 ng/mg urea, 165.8−408.6 ng/mg urea; P = 0.06), and higher con-
centrations than adult males (156.6 ± 24.1 ng/mg urea, 115.8–211.8 ng/mg urea; P < 0.001) and juvenile males 
(192.1 ± 30.5 ng/mg urea, 140.8−262.2 ng/mg urea; P = 0.002) (Fig. 3). Of the models tested, the highest AIC 
(indicating a worse fit) showed that the effect of sample quality did not explain the variation in normalized 

Figure 1.  Collecting respiratory vapor from a North Atlantic right whale, using a polystyrene dish fastened to 
the end of a 9.75 m long pole and positioned above the exhaling blowholes [Photo taken under permit - refer 
to Methods].
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progesterone (∆AICi = 14.78). By contrast, absolute progesterone of blow samples (uncorrected for sample dilu-
tion) were best fitted by the model that included sampling device LR χ2 = 56.63, df = 1, P < 0.001) and had an 
AIC weight ωi of 1.0; whereas all the other models had ωi = 0, indicating that the differences in AICc distinguish-
ing the best model from the others were substantial. In sum, absolute data (non-normalized; no urea correction) 
exhibited no trend with life history variables (Supplementary Table 2).

Sample normalization showed that the highest blow progesterone concentration (1486.9 ng/mg urea) was 
measured in the adult female (14 y.o.) that was independently confirmed pregnant. Two blow samples were 

Figure 2.  Absolute quantity of urea (mg/dL extract) in extracts of whale blow (total n = 100) matched the 
relative amount of respiratory fluid collected in each sample (subjectively graded as fair, good, or excellent), 
providing an indicator of sample dilution. Bar graphs represent means + SEM, with individual samples marked 
by a circle. Different letters denote a significant difference in urea between sample quality scores at P < 0.05.

Model parameters AICc df ΔAICi ωi

(a) Normalized progesterone:

sex + individual whale 958.1 72 0.00 0.75

sex + age class + individual whale 960.3 71 2.24 0.24

sampling device 967.9 73 9.80 0.01

individual whale 968.7 73 10.65 0.00

age class + individual whale 970.5 72 12.43 0.00

sample quality 972.8 72 14.78 0.00

(b) Normalized testosterone:

sex + age class + individual whale 974.1 79 0.00 0.84

age class + individual whale 978.8 80 4.62 0.08

sex + individual whale 980.9 80 6.72 0.03

sampling device 980.2 81 6.01 0.04

individual whale 985.2 81 11.05 0.00

sample quality 987.3 80 13.09 0.00

(c) Normalized cortisol:

individual whale 698.9 86 0.00 0.33

age class + individual whale 701.0 85 2.06 0.12

sex + individual whale 701.0 75 2.09 0.12

time of day + individual whale 701.2 85 2.25 0.11

repeat sample + individual whale 701.3 84 2.40 0.10

sampling duration + individual whale 701.5 85 2.61 0.09

sampling device 701.8 86 2.90 0.08

sample quality 702.7 84 3.78 0.05

Table 1.  Ranking of a priori models explaining the variation in normalized concentrations of (a) progesterone 
and (b) testosterone as reproductive hormones, and (c) cortisol as stress-related hormone, measured in the blow 
of right whales. Biological and sampling variables were all modeled as fixed effects, except for individual whale 
modeled as a random effect. Models were ranked based on Akaike’s Information Criterion adjusted for small 
sample size (AICc). The lowest AICc indicates the best model for each hormone measured (highlighted in bold). 
AICc weights (ωi) sum to 1 and indicate the relative likelihood of the model.
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collected from this pregnant female (progesterone content of the second sample taken 2 d later = 728.1 ng/mg 
urea,), and both samples had elevated progesterone compared to resting adult females (296.5 ± 129.4 ng/mg urea), 
and one lactating female (456.0 ng/mg urea). The fecal sample from this pregnant female (collected concurrently 
with the second blow sample) had elevated fecal progesterone concentrations (4827.4 ng/g dry feces) consist-
ent with pregnancy (>1000 ng/g dry feces16,24). Two other samples with blow progesterone comparable to the 
pregnant female were collected from a 25-year-old female (1133.1 ng/mg urea), presumed to be non-pregnant 
(re-sighted a year later without a calf), and an outlier sample from a six-year-old nulliparous female (1313.9 ng/
mg urea) (Fig. 3).

Testosterone in whale blow was measurable in 86% of sample extracts, excluding 15% of dish (n = 11) and 12% 
of nitex mesh collected samples (n = 3) below the limit of detection. Normalized testosterone concentrations in 
blow samples ranged between 2.2−1246.4 ng/mg urea. The top ranked model explaining variation in normalized 
testosterone data had a high relative model weight (ωi = 0.84) and included the effects of whale age class (LR 
χ2 = 52.53, df = 1, P < 0.001) and sex (LR χ2 = 49.94, df = 1, P < 0.001; Table 1). In both sexes, reproductively 
mature whales had testosterone concentrations two-fold greater (209.1 ± 38.4 ng/mg urea, 145.9−299.6 ng/mg 
urea) than in immature individuals (98.3 ± 17.1 ng/mg urea, 69.9−138.4 ng/mg urea; P = 0.01) (Fig. 4). More 
specifically, juvenile males had blow testosterone concentrations of 77.3 ± 16.2 ng/mg urea (51.2−116.7 ng/mg 
urea) and adult male levels were 134 ± 27.5 ng/mg urea (90.3−201.0 ng/mg urea; P = 0.06), with the highest blow 
testosterone concentration among males measured in an 11-year-old adult (1023.6 ng/mg urea). Adult females 
in this study tended to have wide variation in testosterone (372.2 ± 128.9 ng/mg urea, 188.8−733.8 ng/mg urea), 
which included the pregnant female (394.9 and 579.7 ng/mg urea), and levels were significantly higher than juve-
nile females (114.1 ± 16.2 ng/mg urea, 51.2−116.7 ng/mg urea; P = 0.007) (Fig. 4). Sample quality scores did not 
affect normalized blow testosterone concentrations (∆AICi = 13.50), suggesting that normalization using urea 
effectively corrected the influences of variable sample dilutions at collection. By contrast, absolute blow testoster-
one data were best fitted by the model that included sampling device (ωi = 0.95; LR χ2 = 61.85, df = 1, P < 0.001), 
and absolute (non-normalized; no urea correction) data exhibited a weak relationship with life history variables 
(all ωi < 0.04; Supplementary Table 2).

Cortisol in whale blow was measurable in 86% of sample extracts, excluding 12% of dish (n = 9) and 19% 
of three nitex mesh collected samples (n = 5) that were below the limit of detection. Normalized cortisol con-
centrations in blow samples ranged between 0.1−232.3 ng/mg urea. For blow cortisol concentrations, a model 
with individual whale identity (LR χ2 = 47.52, df = 1, P < 0.001) had the most support relative to other a priori 
models (ωi = 0.33) (Fig. 5). The next ranked models included whale life history traits (sex or age class) or various 
exogenous influences recorded during sample collection (time of day or repeat sample), and each of these models 
had evenly weighted support in accounting for the variation in observed blow cortisol among right whales (all ωi 
~ 0.10 and ∆i ~ 2.0; Table 1). Similar to other hormone results, the worst-fitting model included sample quality 
score (∆AICi = 3.78; Table 1), again indicating that normalized blow cortisol concentrations were corrected for 
differences in collected sample dilutions. The best model for absolute blow cortisol data included sampling device 
(LR χ2 = 142.65, df = 1, P < 0.001) and had an AIC weight ωi of 1.0, whereas all the other models had ωi = 0.00, 
indicating this absolute (non-normalized; no urea correction) data exhibited no association with life history or 
stress-related variables (Supplementary Table 2).

Figure 3.  Variation in (a) absolute (ng/mL extract) and (b) normalized progesterone concentrations (ng/mg 
urea) in blow samples from North Atlantic right whales, according to different sex/age class and reproductive 
states. Individual samples are marked with open circles for juveniles and grey filled circles for adults. Samples 
from a confirmed pregnant female are highlighted with a triangle, and a sample from a lactating female is 
highlighted with a diamond. For boxplots, the line inside the box indicates the median value, the height of the 
box encompasses the distance between the 25th and 75th quartiles, and the whiskers delineate the highest and 
lowest values within 1.5 times the interquartile range. Extreme outliers in the dataset (>3 times the interquartile 
range) are marked with a star.
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Discussion
This study represents the first assessment of whale blow analysis of free-swimming cetaceans at a population-level 
(~8–10% of the estimated population55), and including repeated sampling of individual whales. Although hor-
mones have been previously detected in blow samples from large whales4,9, volumetric measurement and the 
ability to interpret differences in concentration have been thwarted by the highly variable and unknown water 
content of respiratory samples. Determining a methodology for sample normalization is fundamental because 
the major goal of physiological assessment is to examine the differences in analyte (hormone) quantities of two 
or more comparative samples. Here, we found that urea was detectable in whale blow, and that urea content 
in samples concurred with qualitative evaluations of the amount of respiratory fluid captured – showing that 
urea could be used to correct for variable sample dilutions, similar to its utility in human breath analysis44,46,56. 
Analyzing blow samples from known North Atlantic right whales permitted study of the physiological validation 
of this method for a large whale, and results showed that expressing blow hormone concentrations as a ratio to 
urea elucidated biologically relevant endocrine profiles that matched expectations for life history stages in this 
species. Differences in blow hormone/urea ratios were influenced by whale traits (sex, age, and reproductive state) 
known a priori to affect physiological state16,17,24, and were less associated with sampling artifacts, especially sam-
ple quality. The results of this study support the measurement of urea to optimize whale blow hormone studies.

Figure 4.  Variation in (a) absolute (ng/mL extract) and (b) normalized testosterone concentrations (ng/mg 
urea) in blow samples from North Atlantic right whales, according to different sex/age class and reproductive 
states. Individual samples are marked with open circles for juveniles and grey filled circles for adults. Samples 
from a confirmed pregnant female are highlighted with a triangle, and a sample from a lactating female is 
highlighted with a diamond. For boxplots, the line inside the box indicates the median value, the height of the 
box encompasses the distance between the 25th and 75th quartiles, and the whiskers delineate the highest and 
lowest values within 1.5 times the interquartile range. Extreme outliers in the dataset (>3 times the interquartile 
range) are marked with a star.

Figure 5.  Variation in normalized cortisol concentrations (ng/mg urea) in blow samples from individual right 
whales (each column represents an individual whale), according to known sex/age class and reproductive state. 
Individual samples are marked with open circles for juveniles and grey filled circles for adults, with horizontal 
bars representing the mean value for each whale. Samples from a confirmed pregnant female are highlighted 
with a triangle, and a sample from a lactating female is highlighted with a diamond. Extreme outliers for their 
reproductive cohort (sex/age class) are marked with a star (>3 times the interquartile range).
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A commercially available urea assay validated in this study was sensitive enough to measure urea in most 
right whale blow samples (0.01–1.0 mg/dL extract), including optimization of assay protocol for smaller sample 
volumes. Urea is an end-product of protein metabolism by the liver57, and is usually maintained at near constant 
rates in the blood47. Published data on urea concentrations in serum of deceased fin whales (Balaenoptera phy-
salus) (99–184 mg/dL of serum)58 and living bottlenose dolphins (83–172 mg/dL of serum)59 verify that urea 
occurs within a relatively narrow concentration range in cetacean circulation. Furthermore, an experimental 
study on bottlenose dolphins found that circulating urea concentrations in individuals were generally stable, and 
unaltered in response to acute stress exposure (Champagne, pers. comm.). Although the physiological mecha-
nism of urea entering the respiratory droplets of whales is not precisely known, most blood solutes are hypothe-
sized to enter the fluid lining the respiratory tract via passive diffusion30,44. During exhalation, droplet formation 
occurs in the lung airways, where high air velocities and turbulence are encountered, mediating the transport 
of nonvolatile solutes (including urea and hormones) from the lungs to the environment in trace amounts by a 
relatively small volume of respiratory droplets60.

Urea levels in whale blow samples correlated with qualitative assessments of the amount of respiratory fluid 
collected, providing evidence that urea could be an indicator of the relative quantity of blow matrix obtained. 
Increased quantities of urea (>0.2 mg/dL extract) were only measured in samples graded as better quality based 
on visible fluid on the sampling device. However, not all samples visually scored as the best quality yielded a high 
concentration of urea, likely because optimal blow collection (i.e., sampler positioned closer to blowholes) can 
be exposed to an increased risk of seawater dilution as the whale breaks the surface of the water to exhale. Poorly 
graded samples consistently yielded very low urea levels, since peripheral sampling positions around the blow 
cloud will always reduce the opportunity for maximal respiratory fluid collection. Nevertheless, poorer quality 
samples collected in this study (scored as fair) still produced biologically plausible data, once hormone measures 
were normalized against urea. Furthermore, when absolute hormone measures for sample extracts were not nor-
malized for urea, none of the biologically relevant relationships with individual whale sex, age class and repro-
ductive state were observed. These results support the investigation of urea as a credible independent biomarker 
of sample dilution that could be used to normalize hormone concentrations in whale blow.

Sample normalization has not previously been applied to blow hormone analysis of cetaceans. Given that 
volumetric comparisons are not possible for large whale blow samples due to numerous uncontrolled processes 
(e.g., seawater contamination, ventilation rate, condensation rate, or evaporation rate), this approach appears to 
have merit in providing more reliable hormone quantification of whale blow and enabling comparative assess-
ment. When hormone measures were adjusted using the reference analyte of urea, whale blow concentrations of 
both reproductive hormones (progesterone and testosterone) reflected biological differences in sex and/or age 
class. Similarly, normalized cortisol concentrations revealed differences in individual whales across the studied 
population. Overall, normalized concentrations for all hormones measured in this study were not associated 
with external factors linked to sampling artifacts, suggesting that normalization methods were effective for over-
coming the inherent dilution variability in different samples of whale blow and potentially improving the data 
quality. By contrast, absolute measures (raw non-normalized values) of all three hormones did not distinguish 
significant patterns with any biological variables that are known to be associated with physiologic changes in right 
whales; and instead, absolute (non-normalized) data aligned with non-biological factors related to the specific 
device used to collect the sample. The results indicated that the normalization of hormone concentrations in 
field-collected samples from large whales is important for furthering our understanding of this sample matrix and 
promoting reliable determination of the true biological variability of hormones in whale blow.

Progesterone was elevated in known reproductively mature female right whales, and the highest progesterone 
concentration in the study was measured in an adult female confirmed pregnant. A repeat blow sample from 
this pregnant female also had normalized progesterone levels 1.5-fold above resting adult females, and high fecal 
progesterone concentration in this female demonstrated congruence between blow and a well-studied hormone 
matrix in right whales16,24. Samples from an adult female (not re-sighted with a calf) and a nulliparous female 
classified as juvenile had levels within the progesterone range of the pregnant female. Although confirmed preg-
nancy samples were limited to one whale and inter-sample variability was evident, the progesterone signals of 
all whale blow samples adjusted according to urea quantities were generally consistent with female reproductive 
states associated with significant increases in circulating progesterone. Elevated blow progesterone in females 
presumed non-pregnant in this study may be reflective of reproductive cycle stage, since longitudinal studies on 
captive belugas have shown that blow sampling can be sensitive enough to detect increases in progesterone with 
luteal activity33. In the case of the younger female (6 y.o.), precocious sexual maturation as early as five years of 
age has been recorded for female right whales61. Increasing sample sizes will aid in establishing the concentration 
ranges in blow that are associated with pregnancy, reproductive cycles, and lactation in female right whales. The 
reproductive state of an unknown whale should ideally be distinguished from a single sample. However, similar 
to recommendations for hormone measurements of blood62, repeated blow sampling of individual whales may 
be necessary to reliably discriminate between pregnancy and a non-conceptive cycle (luteal phase). Additional 
research is required for blow sampling to better delineate within-subject variability in blow samples, and to pro-
vide diagnostic capabilities for free-swimming right whales.

Sexually mature whales tended to have higher blow testosterone levels than immature whales across both 
sexes. Adult males had twice the testosterone in blow compared to juvenile males, similar to patterns in right 
whale fecal hormones16,24. However, the relative increase in blow testosterone with maturation in males was 
smaller than that observed among females in this study. Higher testosterone concentrations in adult females 
were largely driven by three whales, including the confirmed pregnant female. Elevated testosterone has also 
been measured in blow samples collected from pregnant belugas held in captivity33, in fecal samples from preg-
nant right whales24 and killer whales (Orcinus orca)28, and a longitudinal study observed pregnancy associ-
ated increases in androgen production in captive killer whales63. In the present study, the highest testosterone 
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concentration measured in a male was nearly five-fold higher than most adult male samples and comparable 
in magnitude to maximal female levels, indicating a potential for greater elevations in blow testosterone among 
males. Given the degree of overlap in concentrations between adult males, juvenile males, and females, additional 
sampling across different seasons and/or locations is required for better resolution of testosterone patterns in 
blow samples of males.

Cortisol concentration in blow was low compared to progesterone and testosterone, which agrees with a typ-
ical glucocorticoid concentrations in other sample matrices from this species (e.g., feces and baleen16,17,64) and 
most mammals65; i.e., baseline glucocorticoid levels are maintained within a generally low and restricted physio-
logical range in circulation65. In contrast to the sex hormones, cortisol concentrations in blow were more strongly 
explained by individual variation between whales rather than life history states. Such inter-individual variation in 
cortisol could be indicative of the reactivity of the hypothalamic-pituitary-adrenal axis of individuals in trigger-
ing the production of glucocorticoids66, suggesting that blow as a matrix may reflect acute changes in endocrine 
responses. Similarly, a study on aquarium and wild-caught belugas found evidence of individual differences in 
blow cortisol measures, potentially due to response to out-of-water sampling, individual experience, and social 
dynamics32. The duration of the sampling attempts in this study did not prominently influence blow cortisol 
levels in right whales. Blow samples were obtained within a relatively short timeframe (all ≤23 min), and the lack 
of a detectable adrenal response may indicate that the whales were not disturbed by the vessel presence and/or a 
longer time-course for hormone signals in whale blow. A range of factors showed some evidence of association 
with blow cortisol, including whale life history traits (sex and maturity), time of day, and repeated sampling of 
individual, and each of these variables may contribute to observed inter-individual differences of whales; further 
exploration across different seasons and/or habitats or implementing experimental study design may be required 
for better interpretation of these factors. Some of the individual variation between whales may be due to factors 
not controlled for in this study, such as whale behavior prior to approach (e.g., feeding, social interaction), and/or 
other disturbances in the area (e.g., presence of other vessels or underwater noise levels26). Future studies inves-
tigating blow samples from whales of compromised health, poor body condition, or exposed to a known stressor 
(e.g., fishing gear entanglement)17,25,26 will allow us to better understand changes in adrenal activity as reflected 
in whale blow.

For blow sampling to be a feasible approach for hormone analysis in any free-swimming cetacean, the yield 
recovered from a sample of blow should be sufficient to allow for multiple analyses, i.e., measure a combination 
of sex and/or stress hormones as well as a compound for sample normalization from the same sampling event. A 
sample collected within 1 m of the whale’s blowholes yielded enough extract to perform four single-analyte assays, 
which involved sample extract dilutions of 1:2 or 1:4 for progesterone and testosterone assays, and undiluted 
(neat) extracts for cortisol and urea assays. Alternative analytical technologies such as liquid chromatography 
tandem mass spectrometry (LC/MS) can allow for simultaneous determination of multiple analytes from a single 
sample volume9,31,34,35,41. However, LC/MS systems previously used for measuring steroid hormones in whale 
blow had a reduced analytical sensitivity compared to immunoassay technologies (e.g., reported quantification 
limits of 500 pg/mL for progesterone, testosterone and cortisol31,41), and entail higher instrumentation costs67. The 
continued application of new technological advancements on cetacean samples will help optimize limited sample 
volumes, and subsequently cost-effectiveness; for example, nanospray-LC/MS with a limit of detection of 7–8 pg/
mL for testosterone or progesterone was recently trialed for hormone analysis of whale blubber68. Nonetheless, 
given the naturally low concentration matrix and dispersion of respiratory fluid at exhalation, researchers should 
aim to maximize the amount of sample collected to be able to conduct analyses at optimal performance. Future 
studies will also benefit from using one type of sampling material that produces minimal non-specific binding 
(e.g., polystyrene dish samplers), and researchers must determine the degree of exogenous assay interference from 
sample processing by including negative controls69.

This study presents the first effort to normalize blow hormone measures from swimming large whales at sea, 
demonstrating that normalized progesterone, testosterone and cortisol concentrations of field-collected blow 
samples were biologically relevant, varying by sex, maturity status, and between individual whales. Advancing 
the use of whale blow from hormone detections4,9 to hormone quantification (this study) is vital for intended 
physiological assessments of whale populations13–15. Incorporation of methodologies for sample normalization 
(such as using urea as the denominator) must be performed in quantitative physiological studies where the ana-
lyzed samples have markedly variable water content, and this issue is exacerbated for blow hormone analysis of 
free-swimming whales. The results presented here justify further study of biomarkers for volume correction of 
whale blow samples. Given a sufficiently sensitive assay, it is likely that any small and stable molecule in the airway 
lining fluid could be detectable and quantifiable in whale blow, and the authors encourage further exploratory 
analysis of other viable dilution factors (e.g., total protein, total lipid, specific gravity)5–8,42,46. We caution that for 
most biomarkers in respiratory fluid, analytical techniques and assays will likely be employed at or near their 
detection limits, leading to potential variability in sample data. Therefore, maximizing sample concentration, 
developing more sensitive analytical techniques, and protocols for sample quality control will greatly assist in 
improving reproducibility and the diagnostic value of whale blow analysis.

Similar to the advancements of exhaled breath analysis for humans46,49, this emerging technology for cetaceans 
will be augmented by progressive technical improvements, and represents a considerable advance for studying 
large whales. Whale blow analysis may enable researchers to non-invasively and repeatedly sample a selected indi-
vidual free-swimming whale to gain endocrine information in near-real time. This method could make it possible 
to determine the sex and maturity state of a whale, and to record data on pregnancy, reproductive cycles, and 
adrenal stress responses of large whales with temporal and spatial detail that until now were infeasible. Continued 
validation testing and method refinement using samples collected from well-studied individuals, including ceta-
ceans held in captivity for which serum and blow analytes could be compared to gain an understanding of the 
time course of physiological processes and the degree of association between matrices, will aid in the application 
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of blow sampling to other whale species. Priority areas for research include ascertaining the mechanisms of par-
ticle formation of exhaled respiratory fluid in cetaceans; determining the variability of urea excretion rates both 
within and between individual whales; employment of whale blow sampling in longer-term studies to delin-
eate reference ranges; development of inclusion criteria for samples and evaluating within-subject variability 
and sample reproducibility; and ultimately, achieving standard analytical procedures for endocrine profiling 
of whale blow. Sample normalization should be part of the process for quantifying hormones in blow samples 
from large whales at sea, and this approach holds promise as an informative tool for physiological assessment of 
free-swimming whales in a rapidly changing ocean environment.

Methods
Study species and sample collection.  North Atlantic right whales were sampled in daylight hours 
(between 06:00 and 18:00) in calm seas (<3 Beaufort sea state) along the eastern Atlantic seaboard, where right 
whales congregate for seasonal feeding. Blow samples were collected using a sampling device (see below) fastened 
to the end of a carbon fiber pole (9.75 m long), which was mounted to a cantilevered pivot on the foredeck of 
an 8-m research vessel4 (Fig. 1). During sample collection, the vessel slowly approached an individual whale at 
idling speed on a gradually converging course to minimize disturbance to the whale. The sampling device was 
held ~3–4 m above the water and rotated skyward to avoid seawater contamination until there was a good chance 
of obtaining a sample. On anticipating surfacing behavior of the whale, the pole was extended and lowered to 
position the sampling device above the exhaling blowholes (0.2–0.8 m) to catch a portion of the aerosol droplets. 
To evaluate the efficiency of blow sample collection, we recorded the sampling outcome for every whale that was 
approached for a blow sample (sample successfully collected or no sample). Date, time, and location (latitude/
longitude) of collection were also recorded. Field research on right whales was approved by the New England 
Aquarium’s Animal Care and Use Committee (IACUC) and carried out under the U.S. National Marine Fisheries 
Service permit number 14233 and Canada’s Department of Fisheries and Oceans permits under the Species at 
Risk Act.

Sampling devices.  Two different sampling devices were used to examine the practicality of each material for col-
lecting blow from free-swimming whales, and to provide a sampling device comparison. Both devices had passed 
prior laboratory validations69, but each sampling material had different physical qualities for collecting a volume 
of sample. The preferred device for optimal analytical precision69 was a sterile polystyrene dish (25 cm × 25 cm; 
Corning® bioassay dish CLS431111, Sigma-Aldrich, St Louis, MO, USA; ‘dish’ hereafter) (Fig. 1). The second 
sampling device was a single-ply of nylon 110 µm mesh (cut to 30 cm × 30 cm; Nitex nylon, Elko Filtering, Miami, 
FL, USA; ‘nylon mesh’ hereafter) stretched over a clean plastic framework, which had previously been used in 
published studies as a collection material for cetacean blow4,32,33. In preparation, nylon mesh was thoroughly 
washed before use to remove potential interfering exogenous particles – using separate wash cycles of soapy 
water, distilled water, and 70% ethanol as previously described69.

Sample quality score.  Every sample of whale blow collected was subjectively scored for quality, based on the 
proximity of the sampling device to the whale’s exhaling blowholes and the amount of visible blow droplets 
collected. Sample quality scores were: fair = sampler was in the exhaled vapor at >2 m above the blowholes, 
collecting diffuse fine droplets; good = sampler was 1–2 m above the blowholes, collecting coarse droplets cov-
ering <30% of sampling surface; excellent = sampler was <1 m above the blowholes, collecting coarse droplets 
across >30% of sampling surface. This qualitative score was recorded on the presumption that it characterized the 
amount of respiratory fluid collected on a sampling device4, with samples scored as excellent likely holding greater 
sample volume. If the sampling effort was not successful or poorly scored, we redeployed the sampler to collect 
from the same whale until it dived, recording the number of collection attempts (up to four blows collected for 
a given sample), and the revised quality score. Immediately after collection, the sampling device was placed in a 
protective zip-type bag, detached from the pole, and stored on ice packs in a cooler before being frozen at −80 °C 
upon return to shore (typically within 4 ± 0.2 h of sample collection). Previous testing has confirmed that steroid 
hormones are stable under these field storage conditions for at least 6 hours69.

Assigning reproductive state.  Sampled whales were photographed to enable individual identification, based on 
unique markings such as callosity patterns and scars, and to obtain life history data using the North Atlantic Right 
Whale Identification and Sightings Database55. Photo-identification of individual whales was performed after 
conclusion of fieldwork by expert personnel using well-established protocols54. Whales were categorized as juve-
niles (1–8 y.o. and never calved) or adults (year before first calving or ≥9 y.o.)70. Pregnant females were confirmed 
by multiple sightings with a dependent calf in the year after sampling. This method of identifying pregnancy in 
females would not account for perinatal mortality, spontaneous abortion or undetected embryogenesis; i.e., we 
cannot rule out the possibility that some females re-sighted without calves may in fact have been pregnant the 
year prior.

Evaluation of other sampling influences.  When an animal perceives a stressor, a typical physiological response 
involves a measureable increase in circulating glucocorticoids (including cortisol) within 5 minutes65. Blow sam-
pling does not make contact with the whale; however, the use of an extended pole to collect the blow sample does 
necessitate a close vessel approach (ca 5–10 m) over a period of time, such that the duration of the sampling event 
and repeated sampling of an individual may influence the adrenal stress response of a whale – and ultimately, 
might affect cortisol concentrations in the collected blow sample. Therefore, we recorded the duration of sampling 
for each whale (number of minutes between initiation of the slow approach towards the whale and collection of 
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the sample), as well as whether or not the identified whale had previously been sampled during the study period 
(categories of first sample collected, repeat sample on same day, or repeat sample on a different day).

Sample analysis.  Sample extraction.  Obtaining a true volumetric measurement of respiratory vapor in 
each sample collected from a large whale was not possible due to various factors (see Introduction), especially 
unknown seawater contamination4,9 and air-dried sample potentially adhering to the sampling surface69. To pro-
cess samples, we used methods validated by Burgess et al.69 for extracting hormones from low-volume samples 
collected on dish and nylon mesh devices. In brief, dish samples were extracted by pouring 50 mL of 100% ethanol 
(EtOH) onto the dish surface, which was then lidded and gently agitated on a plate-shaker for 30 min. This EtOH 
rinse was decanted into 25 × 125 mm borosilicate glass tubes and dried under compressed air for 24 h. Nylon 
mesh samples were extracted by pouring 80 mL of 100% EtOH over each mesh inside a 120-mL polypropylene 
jar. The jar was vigorously mixed on a plate-shaker for 1 h, after which the liquid was decanted into 25 × 125 mm 
borosilicate glass tubes. The nylon mesh component was centrifuged at 4000 g for 15 mins to separate additional 
liquid, which was added to the glass tubes. The zip-type bag that held the nylon mesh sample was also rinsed with 
20 mL of 100% EtOH. The combined ~100 mL EtOH rinse was dried in glass tubes under compressed air for 24 h. 
All samples were reconstituted in 1.0 mL of dH2O (= total extract volume; N.B. extract volume does not relate to 
the original [unknown] sample volume of respiratory droplets collected at sea), and stored frozen at −80 °C until 
hormone analysis.

Urea analysis.  Urea was investigated in whale blow because of its use as a normalization factor in several stud-
ies49,50, and to examine the assumption that urea amount reflects the blow concentration of samples collected 
from large whales. Other potential biomarkers for evaluating dilution, albumin and creatinine, were investigated 
in supplementary trials but these compounds had unsuccessful detectability in blow sample extracts when using 
commercial assay kits - and subsequently, further investigation of these compounds was halted to proceed with 
the development of urea analyses.

Blow sample extracts were analyzed for urea using a colorimetric detection kit (#K024-H1; Arbor Assays, Ann 
Arbor, MI) designed to quantitatively measure urea nitrogen in various sample types (including saliva, another 
fluid with low urea concentration). The urea assay is more sensitive to sample turbidity than the hormone assays; 
therefore, all samples were clarified before urea analysis via centrifugation at 5000 g for 10 min, followed by fil-
tration of 100 uL aliquot of the resulting supernatant through a 0.22 µm pore membrane unit (#SLGVX13NL, 
Millex-GV hydrophilic PVDF membrane filter; EMD Millipore, Darmstadt, Germany) using a disposable 
Luer-Lock™ syringe (1 mL; #14-823-30, BD, NJ). For urea assay, nine standards (0.04–10.0 mg/dL; assay sensitiv-
ity = 0.01 ± 0.02 mg/dL) and clarified samples (undiluted) were loaded in duplicate as 30 uL volumes and mixed 
with kit reagents in a 96-well microtiter plate. This assay was performed at 60% volume (i.e., all reagent volumes 
were reduced to 60% of that stated in the manufacturer’s protocol) to minimize volume required from each blow 
sample; in-house testing verified that a 60%-volume protocol maintains good assay performance with acceptable 
accuracy and sensitivity (data not shown). Next, the plate was incubated at room temperature for 30 mins before 
reading the optical density at 450 nm. Urea concentrations were determined using a four-parameter logistic 
model based on the standard curve. Raw assay results for urea nitrogen were converted to urea by multiplying by 
2.14, and expressed as milligrams of urea per deciliter of extract volume (absolute urea mg/dL extract).

Hormone analysis.  Enzyme immunoassay kits (EIA; Arbor Assays, Ann Arbor, MI) were used for the quanti-
fication of progesterone (#K025-H1), testosterone (#K032-H1) and cortisol (#ISWE002) in all samples. Assay 
methods were performed according to manufacturer instructions (see http://www.arborassays.com), except that 
an additional low standard was included in each standard curve to increase the detection range, i.e., assay stand-
ard curve for progesterone ranged from 0.025 to 3.2 ng/mL (8 standards; assay sensitivity = 0.012 ± 0.008 ng/
mL); for testosterone from 0.021 to 10.0 pg/mL (8 standards; assay sensitivity = 0.006 ± 0.006 ng/mL); and for 
cortisol from 0.0125 to 3.2 pg/mL (9 standards; assay sensitivity = 0.003 ± 0.002 ng/mL). For progesterone and 
testosterone assays, blow extracts were diluted at 1:4 with assay buffer (#X065; Arbor Assays). Some samples were 
re-assayed at 1:2 dilution to bring assay results nearer to 50% binding for best assay precision. Seventeen samples 
for progesterone and one for testosterone were below the limit of assay detection. For cortisol, blow extracts were 
analyzed undiluted; all had detectable cortisol. Each plate contained a configuration of standards, non-specific 
binding wells, maximum binding wells and controls run in triplicate (i.e., in duplicate at the beginning of the plate 
and singular at the end), and samples were assayed in duplicate. Hormone concentrations were determined using 
a four-parameter logistic model based on the standard curve. Raw assay results were expressed as nanogram of 
hormone per milliliter of extract volume (absolute hormone ng/mL extract) [N.B. extract volume was always 
1.0 mL and absolute hormone values are not relative concentrations, since all samples were dried and reconsti-
tuted in 1.0 mL dH2O].

Assay quality control and verification.  Since the assay kits used here were not designed for use with whale res-
piratory vapor samples, the suitability of each assay kit for measuring blow extracts was assessed. Parallelism 
and accuracy validation tests71 were performed using a pool of sample extract to ensure that antibodies and 
reagents recognized the targeted analyte in whale blow in a predictable manner and without interference (see 
Supplementary information). The binding of serial dilutions of blow extract (neat to 1:64) was parallel to the 
standard curve in immunoassays (progesterone: F1,9 = 3.06, P = 0.11; testosterone: F1,8 = 0.16, P = 0.70: corti-
sol: F1,13 = 0.63, P = 0.44; see also validations by Hunt et al.4) or colorimetric assay (urea: F1,12 = 2.31, P = 0.15; 
see Supplementary Figure 1a), indicating that substances in whale blow extracts do not interfere with antibody 
binding. All assays exhibited accuracy at their target dilutions (progesterone: slope = 1.14, r2 = 0.99; testos-
terone: slope = 0.83, r2 = 0.99; cortisol: slope = 0.72, r2 = 0.99; urea: slope = 0.99, r2 = 0.99), verifying reliable 
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determination of analyte concentrations in right whale blow samples due to good mathematical accuracy across a 
range of concentrations from very low to high (see Supplementary Figure 1b; see also validations by Hunt et al.4). 
Additionally, seawater samples collected during field sampling were analyzed in each assay, with zero detectable 
hormone or urea measured.

To monitor precision and reproducibility in assays, high (~30%) and very low (~90%) concentration control 
samples were run on each plate (n <6 assays performed for each analyte). All assays were performed by the 
same person, and any sample with a coefficient of variation (CV) between duplicates of >10% was re-assayed72. 
For all assay types, the intra-assay CVs between sample duplicates were <8.2% (2.6 ± 0.3%), and the inter-assay 
CVs were <5.4% (2.9 ± 1.0%) and <10.5% (6.4 ± 1.4%) for high and low concentration controls, respectively. To 
quantify assay sensitivity, zero-standard replicates (n = 20 wells) were analyzed, with sensitivity calculated as the 
mean of assay results for zero-standard replicates ±2 standard deviations72.

Assay interference.  Various materials used in the collection and processing of blow samples have been shown 
to introduce consistent low levels of assay interference69; therefore, we tested for exogenous interference in all 
assays for both sampling devices. As recommended by Burgess et al.69, blank materials of dish and nitex mesh 
were extracted and processed following the same procedure as a biological sample (n = 20 for each different 
sampler type), and then assayed for urea and all three hormones to achieve an estimate of background (spurious) 
measures in these negative control samples. Based on results (see Supplementary Table 1), sample concentrations 
for urea, progesterone, testosterone and cortisol were all adjusted for low and consistent background levels by 
subtracting the mean negative control concentration for that sampling device from the observed concentration. 
This correction helped to evaluate whether adequate blow sample had been collected for hormone analysis, since 
only those sample measurements greater than known assay interference for the sampling device were retained in 
the dataset (i.e., limit of detection). All analyte data are reported corrected for assay interference.

Statistical analysis.  The rate of success for collecting a blow sample from an approached whale during 
each day of fieldwork was analyzed using Chi-square analysis. Spearman rank correlation was used to investigate 
whether the quality score of samples improved with the number of days spent sampling. Data on whale identity, 
sex, and reproductive state were integrated with blow analysis results for all samples. Analyte data were all mod-
eled in a generalized linear model (GLM) framework using a log-link function and gamma distribution, which 
better accounted for the right-skewed distribution of measured concentrations in blow.

To investigate urea as an indicator of the dilution of collected blow samples, we used a GLM to examine the 
quality score of samples [fair, good or excellent] and the type of sampling device [dish or nitex mesh] as explana-
tory variables of absolute urea concentration in blow extracts (ng/mL extract; response variable). An interaction 
term (quality score × sampling device) was included to consider the possibility that urea concentrations may not 
exhibit the same changing relationship across quality scores in dish and nitex mesh samplers. Given that urea 
is typically maintained in a narrow concentration range in the body47, samples with poorer quality scores were 
predicted to have consistently low levels of absolute urea per mL of extract to reflect lower volumes of respiratory 
fluid collected. Conversely, samples with better quality scores were predicted to have the highest levels of absolute 
urea per mL extract. Detecting these trends would indicate that urea content of extracts reflects the amount of 
respiratory fluid collected from a whale (i.e., urea is a meaningful dilution indicator), which is a fundamental 
validation before proceeding to test urea as a normalizing factor for the variable dilution of respiratory droplets. 
Based on the results, hormone assay results were normalized against the amount of urea in each extract, using the 
formula: blow hormone concentrationnormalized (ng/mg urea) = absolute hormone(ng/mL extract)/absolute urea(mg/mL extract). 
Thus, hormone concentrations of blow samples were quantified as nanogram of hormone per milligram of urea 
(ng/mg urea).

Hormone data were analyzed using generalized linear mixed models to allow both fixed and random compo-
nents to be fitted to a model; in this case, individual whale (i.e., whale identity) was included as a random effect 
to account for individual-level variability. For models, we incorporated predicted explanatory variables that were 
known for each right whale and each sampling event, including whale sex and age class [juvenile or adult], the 
duration of the sampling event [binned as ≤3 min, 4–10 min or >10 min], time of day [hour integers, 6:00–18:00], 
sample quality score, type of sampling device, and sample occurrence for an individual whale [categories of first 
sample collected, repeat sample on same day, or repeat sample on a different day]. A set of competing a priori mod-
els were generated that tested different ways in which blow hormone concentrations – progesterone and testos-
terone as sex hormones (6 models), and cortisol as a stress-related hormone (8 models) (see Table 1) – could vary 
as a function of effects associated with life history traits and stress-related influences (i.e., biologically meaningful 
measures), or from non-biological variables associated with sampling artifacts (i.e., measures that might indicate 
sample concentration was not adequately standardized for dilution). NB: both dish and nitex mesh samples were 
retained in the dataset because ‘type of sampling device’ provided an additional and useful non-biological variable 
with which to evaluate the validity of hormone normalization results. We hypothesized that normalized hormone 
values (ng/mg urea) would demonstrate reliable quantification of hormone concentration in different whale blow 
samples, exhibiting stronger associations with biologically relevant factors than sampling artifacts. Finally, we 
conducted the same model analyses on the dataset of absolute hormone values (ng/mg extract) that were not 
adjusted for differing amounts of sample collected, and therefore, not standardized for true sample concentration 
(i.e., not relative data). Inclusion of model results for non-normalized hormone data permits comparison between 
normalized data outcomes and random expectations.

Akaike’s Information Criterion (AIC) with the adjustment for small sample size (AICc) was calculated for each 
model and used to objectively rank the different models73. This approach weighs models by the amount of the var-
iance explained and model complexity (i.e., number of model parameters), with the best model having the lowest 
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AICc score. The level of support for an AICc value was evaluated by ΔAICc (ΔAICc = AICi − AICmin). Models 
with ΔAICc values of 0–2 have equivalent support as the best model, whereas those with ΔAICc >2 were not well 
supported by the data. We used AIC weights (ωi) to provide a relative measure of evidence that a particular model 
is the best model for the observed data73. The significance of the explanatory terms in models were assessed using 
likelihood ratio (LR) tests, and estimated marginal means ± SEM and 95% confidence intervals are reported. 
Model results were used to provide insight into biological and/or non-biological factors associated with observed 
patterns in hormone measurements, and the value of urea normalization for whale blow. Statistical analyses were 
performed using the software SPSS® (version 20 for Macintosh, SPSS Inc.).
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